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ASYMPTOTIC BEHAVIOR OF THE FAR STRESS

FIELD IN THE PROBLEM OF CRACK GROWTH

IN A DAMAGED MEDIUM UNDER CREEP CONDITIONS

UDC 539.376L. V. Stepanova and M. E. Fedina

An asymptotic analysis of stress fields, creep-strain rates, and continuity in the vicinity of the tip of
a crack that grows under creep conditions is performed with allowance for accumulation of dissipated
damages. The configuration of a region of a fully damaged material adjacent to the crack edges and
its tip is determined and studied. It is shown that the Hutchinson–Rice–Rosengren solution cannot
be used as the boundary condition at an infinite point, and a new asymptotic representation of the
far stress field, governing the geometry of the region of the fully damaged material, is obtained.
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Introduction. An analysis of the stress–strain state of a cracked body with allowance for damage accu-
mulation is of particular interest, because combinations of the stress-tensor components and the damage parameter
are normally parts of the fracture criterion and, hence, determine the operation conditions of a structural element.

Much attention has been given recently to the coupled formulation of the problem of stress fields, strains,
and continuity (damage); possible variants of the problem are the elasticity–damage, plasticity–damage, and creep–
damage formulations [1–7]. The coupled formulation is dictated, on one hand, by the necessity of describing the
effect of microdefects accumulated in a body with a macroscopic crack on the stress–strain state and, on the other
hand, by the desire to take into account the reverse process, namely, variation in the stress–strain state due to
formation and growth of microdefects.

It has been found [1–7] that, as a result of damages accumulated in a body with a macrocrack, the stress-field
singularity in the vicinity of the crack tip predicted by the linear and nonlinear fracture mechanics is absent or
substantially attenuated.

In the present paper, it is shown that accumulated damages affect not only the near stress field (in the
vicinity of the crack tip) but also the far stress field (remote from the crack tip).

To study the stress–strain state in the vicinity of the crack tip, an approach used in constructing the
boundary-layer theory [8] or the “microscope principle” [9] is commonly employed. These approaches imply investi-
gations of the region in the vicinity of the crack tip; in this formulation, the crack is assumed to be semi-infinite and
the true boundary conditions are replaced by conditions of asymptotic converging, e.g., the singular elastic solution
for the case of a crack in an elastoplastic material under the assumption of a small-scale plastic flow [10, 11]. In this
case, the plastic-flow region is said to be “completely controlled” by the singular elastic solution. A similar method
for solving the problem of a crack growing in an elastoplastic material is used to formulate the boundary condition
at an infinite point [12–14] and solve the problems of fracture mechanics in the coupled formulation. For example,
the stresses and strains near the tip of antiplane-shear cracks and tensile cracks were studied in the coupled formula-
tions (elasticity–damage and plasticity–damage) in [5] and [6, 7], respectively, under the assumption that the stress
field in an immediate vicinity of the crack tip is distorted owing to damage accumulation, whereas it is completely
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Fig. 1. Geometry of the growing crack tip: XO′Y is the fixed coordinate system and xOy is the
coordinate system attached to the growing crack tip.

determined by the singular elastic solution at a distance from the crack tip where the material remains undamaged.
Thus, a hypothesis is used in which the region of accumulated dissipated damages is completely determined by the
singular elastic solution.

A similar approach is used in the formulation of the boundary condition at an infinite point in an elastic
nonlinear-viscous material [15, 16].

In the present paper, the constitutive relations ε̇ij = (3B/2)(σe/ψ)n−1sij/ψ based on the power law of the
steady creep theory are considered.

In studying the continuity field far from the crack tip, we can assume that the continuity parameter tends
to unity. In this case, the constitutive relations of the problem considered become identical with the power law of
steady-state creep; hence, the boundary conditions can be formulated as conditions of asymptotic converging with
the Hutchinson–Rice–Rosengren (HRR) solution [17, 18].

However, an asymptotic analysis of the kinetic equation shows that the HRR solution cannot be used as
the boundary condition at an infinite point. Consequently, the effect of the damage accumulation process is also
manifested in stress-field variation at distances from the crack tip, which are much greater than the characteristic
linear size of the region of the fully damaged material modeled in the vicinity of the crack tip but still smaller than
the crack length and the characteristic linear size of the body.

1. Formulation of the Problem. We consider a semi-infinite crack propagating in an infinite body
(Fig. 1). Let the constitutive relations of the material be constructed on the basis of the Norton relation between
the creep strain rates and stresses:

ε̇ij =
3
2
B

(σe

ψ

)n−1 sij

ψ
. (1.1)

Here ε̇ij are the components of the creep strain rate tensor, B and n are the material constants, σe is the stress
intensity [σ2

e = 3(σrr−σϕϕ)2/4+3σ2
rϕ for the plane strain state and σ2

e = σ2
rr+σ

2
ϕϕ−σrrσϕϕ+3σ2

rϕ for the plane stress
state, where σij are the stress tensor components], ψ (0 6 ψ 6 1) is Kachanov’s continuity parameter [19] (ω = 1−ψ
(0 6 ω 6 1) is Rabotnov’s damage parameter [20]), and sij = σij − δijσkk/3 are the stress deviator components
[srr = −sϕϕ = (σrr − σϕϕ)/2 for the plane strain state and srr = (2σrr − σϕϕ)/3 and sϕϕ = (2σϕϕ − σrr)/3 for the
plane stress state].

We consider the stress fields, creep-strain rates, and scalar continuity parameter far from the tip of a mode I
crack growing under conditions of the plane strain state or the plain stress state. The stress–strain state in the
vicinity of the tip of the growing crack in a damaged material with constitutive relations of the type (1.1) has been
the subject of numerous studies [1–4]. Astaf’ev et al. [1, 2] showed that the vicinity of the crack edges and its
tip contains a region of the fully damaged material or (and) a zone where damages (micropores, microcracks, and
microdefects) are intensely accumulated, which is sometimes called the process zone. For this reason, the traditional
equations of mechanics of continuous media cannot be formulated in the vicinity of the tip of the growing crack.
Therefore, we assume that a region of the fully damaged material in which all stress-tensor components and the
continuity parameter vanish exists in the vicinity of the tip of the defect. We study the governing system of
equations (equations of equilibrium, strain-compatibility condition, and kinetic equation of damage accumulation)
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at a significant distance from the tip of the defect to determine the asymptotic behavior of the far stress field and
the configuration of the region of the fully damaged material.

Thus, it is necessary to find the solution of a system of equations written in polar coordinates with the pole
located at the tip of a propagating crack (see Fig. 1), which includes:
— the equations of equilibrium

∂σrr

∂r
+

1
r

∂σrϕ

∂ϕ
+
σrr − σϕϕ

r
= 0,

∂σrϕ

∂r
+

1
r

∂σϕϕ

∂ϕ
+ 2

σrϕ

r
= 0; (1.2)

— the Cauchy relations between displacements and strains, i.e.,

εrr =
∂ur

∂r
, εϕϕ =

ur

r
+

1
r

∂uϕ

∂ϕ
, 2εrϕ =

1
r

∂ur

∂ϕ
+
∂uϕ

∂r
− uϕ

r
, (1.3)

where εij are the strain-tensor components and ui are the displacements, the strain-compatibility condition formu-
lated for the creep strain rates, namely,

2
∂

∂r

(
r
∂ε̇rϕ

∂ϕ

)
=
∂2ε̇rr

∂ϕ2
− r ∂ε̇rr

∂r
+ r

∂2(rε̇ϕϕ)
∂r2

; (1.4)

— the kinetic equation that postulates the power law of damage accumulation
dψ

dt
= −A

(σeq

ψ

)m

, (1.5)

where A and m are the material constants, t is the time, and σeq = ασ1 + βσe + (1 − α − β)σkk is the equivalent
stress (σ1 is the maximum principal stress and σkk is the hydrostatic stress; the constants α and β are determined
experimentally). If the crack grows with a rate v(t) in the x direction, the material derivative with respect to the
time t is

d

dt
=

∂

∂t
− v ∂

∂x
=

∂

∂t
− v

(
cosϕ

∂

∂r
− sinϕ

r

∂

∂ϕ

)
.

Confining ourselves to the case of steady growth of the crack, where the unknown quantities have no explicit
dependence on time, we write the derivative with respect to time as

d

dt
= −v ∂

∂x
= −v

(
cosϕ

∂

∂r
− sinϕ

r

∂

∂ϕ

)
.

In the case of steady growth of the crack, we have
∂ψ

∂t
≡ 0,

and the kinetic equation becomes

−v
(

cosϕ
∂ψ

∂r
− sinϕ

r

∂ψ

∂ϕ

)
= −A

(σeq

ψ

)m

. (1.6)

The constitutive relations (1.1) are written as

ε̇rr = −ε̇ϕϕ =
3
4
B

(σe

ψ

)n−1σrr − σϕϕ

ψ
, ε̇rϕ =

3
2
B

(σe

ψ

)n−1σrϕ

ψ
(1.7)

for the plane strain state and

ε̇rr =
1
2
B

(σe

ψ

)n−1 2σrr − σϕϕ

ψ
, ε̇ϕϕ =

1
2
B

(σe

ψ

)n−1 2σϕϕ − σrr

ψ
, ε̇rϕ =

3
2
B

(σe

ψ

)n−1σrϕ

ψ
(1.8)

for the plane stress state.
The traction-free boundary conditions at the crack edges have the form

σϕϕ(r, ϕ = ±π) = 0, σrϕ(r, ϕ = ±π) = 0. (1.9)

The boundary condition at infinity is

σij(r →∞, ϕ) → C̃rs0 σ̄ij(ϕ, n), (1.10)

where the values of s0 are determined in the course of solving the problem and σ̄ij(ϕ, n) are functions to be
determined.
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It should be noted that the boundary condition (1.10) for the constitutive relations (1.1) can be formulated
at an infinite point as

σij(r →∞, ϕ) =
( C∗

BInr

)1/(n+1)

σ̄ij(ϕ, n), (1.11)

because we have ψ ≡ 1 at infinity, and the two-term asymptotic expansion of the scalar continuity parameter at
large distances from the crack tip is sought in the form

ψ(r, ϕ) = 1− rγ1g(1)(ϕ) + o(rγ1), γ1 < 0, r →∞. (1.12)

In this case, the constitutive equations (1.1) are reduced to conventional relations of the power-law steady
creep. However, as is shown below, the kinetic equation of damage accumulation (1.6) yields the relation γ1

= 1−m/(n+ 1), and since m = 0.7n, then γ1 > 0, which contradicts the condition γ1 < 0 in (1.12). Consequently,
the boundary condition (1.11) is used in a more general form (1.10). The quantity C̃ can be determined by solving
the problem of a real structural element under certain loads with allowance for true boundary conditions.

The solution of the boundary-value problem (1.2)–(1.8) subject to the boundary conditions (1.9) and (1.10)
is a function of the following variables and parameters of the problem: r, ϕ, A, m, v, C̃, B, and n.

A dimension analysis suggests that we can pass to the dimensionless functions

σij(r, ϕ) = [C̃(v/A)s0 ]1/(s0m+1)σ̃ij(r̃, ϕ), ε̇ij(r, ϕ) = 3B˜̇εij(r̃, ϕ)/2, ψ(r, ϕ) = ψ̃(r̃, ϕ),

where σ̃ij , ˜̇εij , and ψ̃ are dimensionless functions of the dimensionless variables ϕ and r̃ = r/r0, where r0
= [C̃−mv/A]1/(s0m+1) (below, the tilde is omitted).

After introduction of the dimensionless quantities, the equations of equilibrium and the compatibility con-
dition retain their form. The kinetic equation becomes

cosϕ
∂ψ

∂r
− sinϕ

r

∂ψ

∂ϕ
=

(σeq

ψ

)m

. (1.13)

The constitutive relations (1.7) and (1.8) are written in the dimensionless variables as

ε̇rr = −ε̇ϕϕ =
1
2

(σe

ψ

)n−1σrr − σϕϕ

ψ
, ε̇rϕ =

(σe

ψ

)n−1σrϕ

ψ
(1.14)

for the plane strain state and

ε̇rr =
1
3

(σe

ψ

)n−1 2σrr − σϕϕ

ψ
, ε̇ϕϕ =

1
3

(σe

ψ

)n−1 2σϕϕ − σrr

ψ
, ε̇rϕ =

(σe

ψ

)n−1σrϕ

ψ
(1.15)

for the plane stress state.
In the dimensionless variables, the boundary conditions at infinity acquire the form

σij(r →∞, ϕ) → rs0 σ̄ij(ϕ, n). (1.16)

Thus, we have to find the solution of system (1.2)–(1.4), (1.7), (1.8), (1.13) subject to the boundary condi-
tions (1.16) and

σϕϕ(r, ϕ = ±π) = 0, σrϕ(r, ϕ = ±π) = 0.

2. Asymptotic Solution of the Problem. The stress-tensor components are expressed in terms of Airy’s
stress function F (r, ϕ) as

σϕϕ =
∂2F

∂r2
, σrr = ∆F − σϕϕ, σrϕ = − ∂

∂r

(1
r

∂F

∂ϕ

)
, (2.1)

where ∆ = ∂2/∂r2 + (1/r) ∂/∂r + (1/r2) ∂2/∂ϕ2 is the Laplace operator.
We seek for the solution of the system formulated above in the form of the power expansions

F (r, ϕ) = rλ0f (0)(ϕ) + rλ1f (1)(ϕ) + o(rλ1) (λj < 0),

ψ(r, ϕ) = 1− rγ1g(1)(ϕ) + o(rγ1) (γj < 0)
(2.2)

as r → ∞, moving from an infinite point to the vicinity of the crack tip; we have to determine the eigenfunctions
f (j)(ϕ) and g(j)(ϕ) and the eigenvalues λj and γj .
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By virtue of Eqs. (2.1) and (2.2), the two-term asymptotic expansions of the stress-tensor components, stress
intensity, and equivalent stress are given by the equalities

σrr(r, ϕ) = rs0 [λ0f
(0) + (f (0))′′] + rs1 [λ1f

(1) + (f (1))′′],

σϕϕ(r, ϕ) = rs0λ0(λ0 − 1)f (0) + rs1λ1(λ1 − 1)f (1),

σrϕ(r, ϕ) = rs0(1− λ0)(f (0))′ + rs1(1− λ1)(f (1))′

or

σrr(r, ϕ) = rs0f
(0)
rr (ϕ) + rs1f

(1)
rr (ϕ), σϕϕ(r, ϕ) = rs0f

(0)
ϕϕ (ϕ) + rs1f

(1)
ϕϕ (ϕ),

σrϕ(r, ϕ) = rs0f
(0)
rϕ (ϕ) + rs1f

(1)
rϕ (ϕ), s0 = λ0 − 2, s1 = λ1 − 2,

(2.3)

where

f (j)
rr (ϕ) = λjf

(j) + (f (j))′′, f (j)
ϕϕ(ϕ) = λj(λj − 1)f (j), f (j)

rϕ = (1− λj)(f (j))′; (2.4)

σe(r, ϕ) = rs0σ(0)
e (ϕ) + rs1σ(1)

e (ϕ), σeq(r, ϕ) = rs0σ(0)
eq (ϕ) + rs1σ(1)

eq (ϕ).

For the plane strain state, we have

(σ(0)
e )2 = (3/4){λ2

0(λ0 − 2)2(f (0))2 + 4(λ0 − 1)2[(f (0))′]2 − 2λ0s0f
(0)(f (0))′′ + [(f (0))′′]2},

σ(1)
e = {[λ0(2− λ0)f (0) − (f (0))′′][λ1(2− λ1)f (1) − (f (1))′′] + 4(1− λ0)(1− λ1)(f (0))′(f (1))′}/σ(0)

e ,

and for the plane stress state, we have

(σ(0)
e )2 = λ2

0(λ
2
0 − 3λ+ 3)(f (0))2 + 3(λ0 − 1)2[(f (0))′]2 + λ0(3− λ0)f (0)(f (0))′′ + [(f (0))′′]2,

σ(1)
e = {(λ0f

(0) + (f (0))′′)(λ1f
(1) + (f (1))′′) + λ0(λ0 − 1)λ1(λ1 − 1)f (0)f (1)

− [(λ0f
(0) + (f (0))′′)λ1(λ1 − 1)f (1) + (λ1f

(1) + (f (1))′′)λ0(λ0 − 1)f (0)] + 3(1− λ0)(1− λ1)(f (0))′(f (1))′}/σ(0)
e ,

σ(0)
eq (ϕ) = ασ

(0)
1 (ϕ) + βσ(0)

e (ϕ) + (1− α− β)σ(0)
kk (ϕ).

The constant γ1 is determined by an asymptotic analysis of the kinetic equation (1.13). Substituting the
asymptotic expansions (2.2) into the kinetic equation (1.13), we obtain

γ1 cosϕrγ1−1g(1)(ϕ)− sinϕrγ1−1(g(1)(ϕ))′ = −r(λ0−2)m(σ(0)
eq (ϕ))m.

Therefore, if we accept the hypothesis of identical orders of the quantities as r →∞, which enter the left and right
sides of the last equation, the equalities γ1 − 1 = (λ0 − 2)m or γ1 = 1 + s0m and

sinϕ (g(1)(ϕ))′ − γ1 cosϕg(1)(ϕ) = (σ(0)
eq (ϕ))m (2.5)

are valid.
Given the two-term asymptotic expansions of the stress-tensor components (2.3) and the continuity parame-

ter [the second expression in (2.2)], one can obtain two-term asymptotic expansions of the components of the creep
strain-rate tensor. Substitution of Eq. (2.3) and the second asymptotic expansion from (2.2) into (1.14) and (1.15)
yields the following two-term asymptotic expansions of the creep strain rates (as r →∞):

— for the plane strain state, we have

ε̇rr(r, ϕ) = −ε̇ϕϕ(r, ϕ) = rs0nε
(0)
rr (ϕ) + rs0n+s1−s0ε

(1)
rr (ϕ),

ε̇rϕ = rs0nε
(0)
rϕ (ϕ) + rs0n+s1−s0ε

(1)
rϕ (ϕ),

(2.6)

where

ε(0)rr (ϕ) = (1/2)(σ(0)
e )n−1(f (0)

rr − f (0)
ϕϕ ), ε(0)rϕ (ϕ) = (σ(0)

e )n−1f (0)
rϕ ; (2.7)

ε(1)rr (ϕ) = (1/2)(σ(0)
e )n−1{f (1)

rr − f (1)
ϕϕ + (f (0)

rr − f (0)
ϕϕ )[ng(1) + (n− 1)σ(1)

e /σ(0)
e ]};

ε(1)rϕ (ϕ) = (σ(0)
e )n−1{f (1)

rϕ + f (0)
rϕ [ng(1) + (n− 1)σ(1)

e /σ(0)
e ]};

(2.8)
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— for the plane stress state, we have

ε̇rr(r, ϕ) = rs0nε
(0)
rr (ϕ) + rs0n+s1−s0ε

(1)
rr (ϕ),

ε̇ϕϕ(r, ϕ) = rs0nε
(0)
ϕϕ(ϕ) + rs0n+s1−s0ε

(1)
ϕϕ(ϕ),

ε̇rϕ(r, ϕ) = rs0nε
(0)
rϕ (ϕ) + rs0n+s1−s0ε

(1)
rϕ (ϕ),

(2.9)

where

ε
(0)
rr (ϕ) = (1/3)(σ(0)

e )n−1(2f (0)
rr − f (0)

ϕϕ ), ε
(0)
ϕϕ(ϕ) = (1/3)(σ(0)

e )n−1(2f (0)
ϕϕ − f (0)

rr ),

ε
(0)
rϕ (ϕ) = (σ(0)

e )n−1f
(0)
rϕ ;

(2.10)

ε
(1)
rr (ϕ) = (1/3)(σ(0)

e )n−1{2f (1)
rr − f (1)

ϕϕ + (2f (0)
rr − f (0)

ϕϕ )[ng(1) + (n− 1)σ(1)
e /σ

(0)
e ]},

ε
(1)
ϕϕ(ϕ) = (1/3)(σ(0)

e )n−1{2f (1)
ϕϕ − f (1)

rr + (2f (0)
ϕϕ − f (0)

rr )[ng(1) + (n− 1)σ(1)
e /σ

(0)
e ]},

ε
(1)
rϕ (ϕ) = (σ(0)

e )n−1{f (1)
rϕ + f

(0)
rϕ [ng(1) + (n− 1)σ(1)

e /σ
(0)
e ]}.

(2.11)

The second term of the asymptotic expansion of the creep strain rates (2.8) and (2.11) is derived under the
assumption that s1 = s0 + γ1. This equality is obtained by comparing the orders of terms at rs1−s0 and rγ1 that
enter the two-term asymptotic expansion of the strain rates. Only if these orders coincide, one can construct as
many terms of the asymptotic expansion as desired. At each step of the process, one obtains an ordinary differential
equation for a new unknown function (either f (k) or g(k)) and no “non-balanced” terms appear in the compatibility
condition. Thus, the exponents in the asymptotic expansion of the stress-tensor components sk are determined as
follows: the eigenvalue s0 is calculated numerically (the procedure is described below) and sk (k > 0) is found by
an asymptotic analysis of the (k + 1)-term expansion of the creep strain rates. The exponents γk are found by an
asymptotic analysis of the kinetic equation of damage accumulation.

It should be noted that the leading term in the asymptotic expansions of the components of the creep
strain rate tensor (2.7) and (2.10) is completely determined by the function f (0)(ϕ) by virtue of (2.4), which allows
one to determine the unknown function f (0)(ϕ) from the strain-compatibility condition without determining the
function g(1)(ϕ). Thus, the initially coupled problem becomes “uncoupled.” Indeed, substituting (2.6) for the plane
strain state and (2.9) for the plane stress state into the strain-compatibility condition and equating the coefficients
of identical powers of r, we obtain two ordinary differential equations

2(s0n+ 1)
∂ε̃

(0)
rϕ

∂ϕ
=
∂2ε̃

(0)
rr

∂ϕ2
− s0n(s0n+ 2)ε̃(0)rr ; (2.12)

2(s0n+ s1 − s0 + 1)
∂ε̃

(1)
Rϕ

∂ϕ
=
∂2ε̃

(1)
rr

∂ϕ2
− (s0n+ s1 − s0)(s0n+ s1 − s0 + 2)ε̃(1)rr (2.13)

for the plane strain state and

2(s0n+ 1)
∂ε̃

(0)
rϕ

∂ϕ
=
∂2ε̃

(0)
rr

∂ϕ2
− s0nε̃(0)rr + (s0n+ 1)s0nε̃(0)ϕϕ; (2.14)

2(s0n+ s1 − s0 + 1)
∂ε̃

(1)
rϕ

∂ϕ
=
∂2ε̃

(1)
rr

∂ϕ2
− (s0n+ s1 − s0)ε̃(1)rr + (s0n+ s1 − s0 + 1)snε̃(1)ϕϕ (2.15)

for the plane stress state.
Equations (2.12) and (2.14) are the fourth-order nonlinear ordinary differential equations with respect to

the function f (0)(ϕ). Therefore, the function f (0)(ϕ) is determined first, and then Eq. (2.5) is studied as an
inhomogeneous ordinary differential equation with respect to the function g(1)(ϕ) whose right side is determined by
the function f (0)(ϕ). Once the function g(1)(ϕ) is determined, one can obtain the numerical solution of the ordinary
differential equation (2.13) [or (2.15)], which is the fourth-order linear ordinary differential equation with respect to
the function f (1)(ϕ) [this equation contains the functions f (0)(ϕ) and g(1)(ϕ), which are already known functions
at this step of constructing the asymptotic expansions]. The sequence of these operations can be continued. Thus,
an algorithm for “decoupling” the system of equations of the coupled problem is proposed in the present paper.
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At each step, one has to construct either the function f (j)(ϕ) after determining the functions f (0), . . . , f (j−1) and
g(1), . . . , g(j) or the function g(j)(ϕ) after determining the functions f (0), . . . , f (j−1) and g(1), . . . , g(j−1) (j ≥ 1).

The present paper is aimed at determining a one-term expansion of Airy’s stress function and a two-term
expansion of the continuity parameter, which allows one to estimate the configuration of the region of the fully
damaged material enclosing the tip of the crack and adjacent to its edges.

Substituting (2.7) into (2.12) and taking into account (2.4), we obtain the nonlinear ordinary differential
equation with respect to the function f0(ϕ)

(f (0))IV N(ϕ) = 4(s0n+ 1)(1− λ0)[(n− 1)K(ϕ)(f (0))′ + h2(f (0))′′]

+ h2[(s0λ0 + s0n(s0n+ 2))(f (0))′′ − s0n(s0n+ 2)(2− λ0)λ0f
(0)]

− (n− 1)(n− 3)(K(ϕ)/h)2[(f (0))′′ − s0λ0f
(0)]

− 2(n− 1)K(ϕ)[(f (0))′′′ − s0λ0(f (0))′]− (n− 1)M(ϕ)[(f (0))′′ − s0λ0f
(0)], (2.16)

where

K(ϕ) = [(f (0))′′ − s0λ0f
(0)][(f (0))′′′ − s0λ0(f (0))′] + 4(1− λ0)2(f (0))′(f (0))′′,

M(ϕ) = −[(f (0))′′ − s0λ0f
(0)]λ0s0(f (0))′′ + [−s0λ0f

(0) + (f (0))′′]2 + 4(1− λ0)2(f (0))′(f (0))′′,

N(ϕ) = n[(f (0))′′ − s0λ0f
(0)(f (0))′′]2 + 4(1− λ0)2[(f (0))′]2,

h(ϕ) =
√

[(f (0))′′ − λ0s0f (0)]2 + 4(1− λ0)2((f (0))′)2

for the plane strain state. Substitution of (2.10) into (2.14) with allowance for (2.4) yields the nonlinear ordinary
differential equation with respect to the function f0(ϕ)

(f (0))IV N(ϕ) = 6(s0n+ 1)(1− λ0)[(n− 1)K(ϕ) + h2(f (0))′′]

− [(n− 3)(K(ϕ)/h)2 + (n− 1)M(ϕ)][λ0(3− λ0)f (0) + 2(f (0))′′]

− 2(n− 1)K(ϕ)[λ0(3− λ0)(f (0))′ + 2(f (0))′′′]−

− h2λ0s0n((s0n+ 1)(2λ0 − 3)− 3 + λ0)f (0) − h2(λ0(3− λ0)− s0n(s0n+ 1))(f (0))′′, (2.17)

where

K(ϕ) = (λ0f
(0) + (f (0))′′)(λ0(f (0))′ + (f (0))′′′) + λ2

0(λ0 − 1)2f (0)(f (0))′

+ 3(1− λ0)2(f (0))′(f (0))′′ − λ0(1− λ0)(λ0(f (0))′ + (f (0))′′′)f (0)/2− λ0(1− λ0)(λ0f
(0) + (f (0))′′)(f (0))′/2;

M(ϕ) = (λ0(f (0))′ + (f (0))′′′)2 + λ0(3− λ0)(λ0f
(0) + (f (0))′′)(f (0))′′

+ λ2
0(1− λ0)2((f (0))′)2 + λ2

0(λ0 − 1)(2λ0 − 3)f (0)(f (0))′′/2 + 3(1− λ0)2((f (0))′′)2

+ 3(1− λ0)2(f (0))′(f (0))′′′ − λ0(λ0 − 1)(λ0(f (0))′ + (f (0))′′′)(f (0))′;

N(ϕ) = (n− 1)(λ0(3− λ0)f (0) + 2(f (0))′′)2/2 + 2h2;

h = [(λ0f
(0) + (f (0))′′)2 + λ2

0(λ0 − 1)2(f (0))2 − (λ0f
(0) + (f (0))′′)λ0(λ0 − 1)f (0) − 3(1− λ0)2((f (0))′)2]1/2

for the plane stress state. The solution of the equations obtained should satisfy the traction-free boundary conditions
at the crack edges

f (0)(π) = 0, (f (0))′(π) = 0 (2.18)

and the conditions of symmetry on the crack continuation

(f (0))′(0) = 0, (f (0))′′′(0) = 0. (2.19)
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TABLE 1

n s0 f ′′(0)

1 −1.5 −0.75
2 −1.0 −0.5
3 −0.7716 −0.4372
4 −0.6684 −0.4092
5 −0.6179 −0.3985
6 −0.5901 −0.3950
7 −0.5732 −0.3943
8 −0.5621 −0.3948
9 −0.5543 −0.3958

TABLE 2

n s0 f ′′(0)

1 −1.5 −0.75
2 −1.1540 −0.5686
3 −1.0 −0.5
4 −0.9133 −0.4658
5 −0.8580 −0.4428
6 −0.8197 −0.4261
7 −0.7919 −0.4134
8 −0.7708 −0.4035
9 −0.7543 −0.3955
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Fig. 2. Stress-tensor components as functions of the polar angle for the tensile crack in the plane
stress state: (a) n = 1 and m = 1; (b) n = 5 and m = 0.7n.

To solve numerically Eqs. (2.16) and (2.17), we use the fifth-order Runge–Kutta–Fehlberg method combined
with the shooting method. Equations (2.16) and (2.17) subject to the boundary conditions (2.18) and (2.19) are
reduced to the Cauchy problem. For this purpose, the boundary conditions for ϕ = π are replaced by the initial
conditions f (0)(0) = c1 and (f (0))′′(0) = c2 for ϕ = 0. Since Eqs. (2.16) and (2.17) are homogeneous, we can use
the normalization condition f (0)(0) = 1. Thus, the initial conditions are written as

f (0)(0) = 1, (f (0))′(0) = 0, (f (0))′′(0) = c2, (f (0))′′′(0) = 0.

In solving numerically system (2.16), (2.17), we determine the eigenvalues s0 and the constant c2 for various n
such that the boundary conditions are satisfied for ϕ = π: f (0)(π) = 0 and (f (0))′(π) = 0. To determine the
constants s0 and c2, we verify the conditions (f (0))2(π)+ ((f (0))′(π))2 ≤ ε, where ε = 10−5. The eigenvalues s0 and
the second derivative of the function f (0)(ϕ) on the continuation of the crack line ϕ = 0 are summarized in Tables 1
and 2 for the plane strain state and the plane stress state, respectively. Figures 2a and 2b show the stress-tensor
components as functions of the polar angle for the tensile crack in the plane stress state for n = 1 and 5, respectively.
For other values of n, the dependences of the stress-tensor components on the polar angle are similar to those shown
in Fig. 2b except for the cases of n = 2 for the plane strain state and n = 3 for the plane stress state, where λ0 = 1
and, hence, by virtue of (2.3), σij = const for all i and j.

Substituting the asymptotic expansion (2.2) into the kinetic equation (1.11), we obtain the differential
equation for steady crack growth

sinϕ(g(1)(ϕ))′ − γ1 cosϕg(1)(ϕ) = (σ(0)
eq (ϕ))m, (2.20)

where γ1 = 1 + s0m. The exponents γ1 in the expansion of the scalar continuity parameter are listed in Tables 3
and 4 for the plane strain state and the plane stress state, respectively.
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Fig. 3. Geometry of the region of the fully damaged material for n = 3 and m = 0.7n: (a) for an
observation point located in the vicinity of the crack tip; (b, c) for observation points remote from
the crack tip.

TABLE 3

n m γ1

1 1 −0.5
2 0.7n −0.4
3 0.7n −0.6205
4 0.7n −0.8717
5 0.7n −1.1626
6 0.7n −1.4785
7 0.7n −1.8089
8 0.7n −2.1479
9 0.7n −2.4925

TABLE 4

n m γ1

1 1 −0.5
2 0.7n −0.6156
3 0.7n −1.1
4 0.7n −1.5574
5 0.7n −2.0030
6 0.7n −2.4431
7 0.7n −2.8805
8 0.7n −3.3167
9 0.7n −3.7532
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Fig. 4. Configuration of the region of the fully damaged mate-
rial (I) and the zone of domination of the HRR solution (II).

The two-term asymptotic expansion of the continuity parameter allows one to estimate the shape and size of
the region of the fully damaged material. Using the above-constructed dependences of the stress-tensor components
on the polar angle, one obtains the function g(1)(ϕ) by solving numerically the ordinary differential equation (2.20)
under the condition that its solution is regular for ϕ = 0:

g(1)(0) = −(σ(0)
eq (0))m/γ1.

Since the continuity parameter vanishes on the boundary of this zone, ψ(r, ϕ) = 1 − rγ1g(1)(ϕ) = 0, the
equation of the boundary of the region of the fully damaged material has the form

r(ϕ) = [g(1)(ϕ)]−1/γ1 .

The configuration of the region of the fully damaged material is shown in Fig. 3 for observation points located at
different distances from the tip of the growing crack.

Thus, it has been found that the HRR asymptotic solution, which can be regarded as the classical asymptotic
representation of the stress-tensor components in the vicinity of the crack tip for the power relation between the
components of stresses and strains (or strain rates), cannot be used as a boundary condition at an infinite point in
the problem of a semi-infinite crack growing in a damaged medium for constitutive relations of the type considered.
Failure to formulate the boundary condition at an infinite point as the requirement of asymptotic converging of the
desired solution and the HRR solution can be explained by the fact that the region of the fully damaged material
is much greater than the zone where the HRR solution dominates, so that the zone where the HRR solution holds
is covered partly or completely by the region of the fully damaged material and, hence, the geometry of the latter
cannot be governed by the HRR asymptotic solution (Fig. 4).

It is worth noting that the eigenvalue spectrum of this problem and the character of the singularity of the
stress-tensor components at the crack tip were studied in [21], where the eigenvalues were determined only for some
exponents in the steady-state creep power law (n = 1, 3, and 5). The eigenvalues obtained in the present paper
coincide with those in [21] for all exponents n that are of practical importance (see Tables 1–4).

Conclusions. A comparatively simple approach proposed in the present paper allows one to determine the
geometry of the region of the fully damaged material in the vicinity of the tip and edges of a crack. It should be
noted that it is common practice to define the boundary of the region of the fully damaged material a priori on the
basis of, e.g., experimental observations [3], where the boundary of the region ahead of the crack tip is described by
an elliptic arc and additionally determined by two straight lines parallel to the crack edges beyond the crack tip.
In contrast to the approach of [3], a unified relation r = r(ϕ) is obtained in the present paper for determining the
boundary of the fully damaged material.
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